De la vitesse moyenne à la vitesse instantanée

Yves Delhay

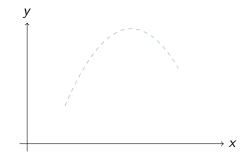
De la vitesse moyenne à la vitesse instantanée Cours de 5ème Année 1 hr/sem

Yves Delhaye

UREM de Bruxelles

20 octobre 2009

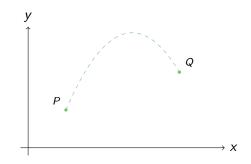
Vitesse moyenne


De la vitesse moyenne à la vitesse instantanée

Yves Delhay

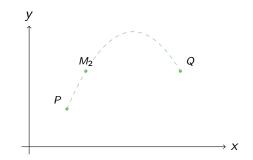
$$\vec{v} = \frac{\Delta \vec{e}}{\Delta t}$$

De la vitesse moyenne à la vitesse instantanée


Yves Delhaye

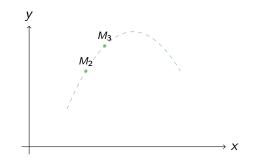
Voici une trajectoire du mobile M!

De la vitesse moyenne à la vitesse instantanée


Yves Delhaye

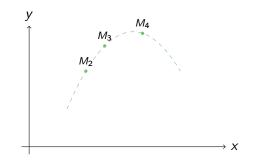
M part de P et arrive à Q.

De la vitesse moyenne à la vitesse instantanée


Yves Delhaye

M occupe sucessivement les positions : \vec{e}_2

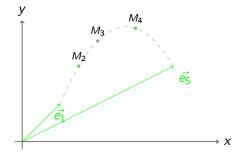
De la vitesse moyenne à la vitesse instantanée


Yves Delhaye

M occupe sucessivement les positions : \vec{e}_2 , \vec{e}_3 .

De la vitesse moyenne à la vitesse instantanée

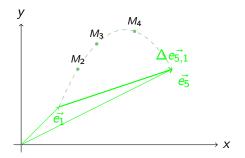
Yves Delhaye



 $\ensuremath{\mathsf{M}}$ occupe sucessivement les positions :

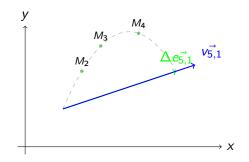
$$\vec{e}_2$$
 , $\vec{e_3}$, $\vec{e_4}$.

De la vitesse moyenne à la vitesse instantanée


Yves Delhaye

La position de P est le vecteur $\vec{e_1}$. La position de Q est le vecteur $\vec{e_5}$.

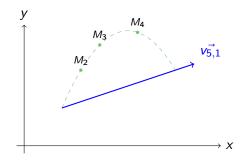
De la vitesse moyenne à la vitesse instantanée


Yves Delhave

Le déplacement entre P et Q est le vecteur $\Delta \vec{e}_{5,1}$, différence entre \vec{e}_5 et \vec{e}_1 .

De la vitesse moyenne à la vitesse instantanée

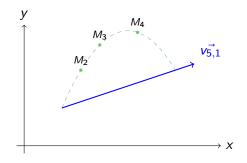
Yves Delhav



Le vitesse moyenne entre P et Q est le vecteur $\vec{v}_{5,1}$.

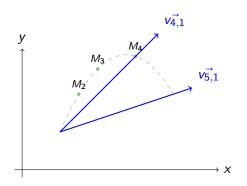
$$ec{v}_{5,1} = rac{\Delta ec{e}_{5,1}}{\Delta t}$$

De la vitesse moyenne à la vitesse instantanée


Yves Delhave

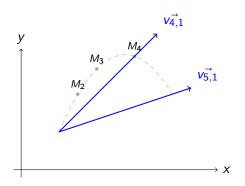
Le vecteur vitesse $\vec{v}_{5,1}$ n'est pas dans la direction du mouvement.

De la vitesse moyenne à la vitesse instantanée


Yves Delhave

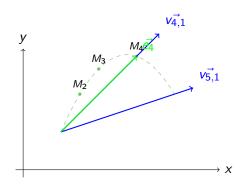
Que se passe t'il avec un Δt plus petit?

De la vitesse moyenne à la vitesse instantanée


Yves Delhave

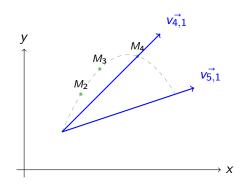
Entre P et M_4 par exemple!

De la vitesse moyenne à la vitesse instantanée


Yves Delhave

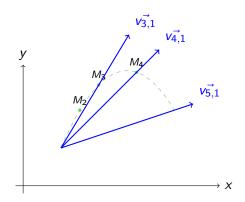
Notez que le vecteur vitesse $\vec{v}_{4,1}$ est de même longueur que le vecteur vitesse $\vec{v}_{5,1}$.

De la vitesse moyenne à la vitesse instantanée


Yves Delhave

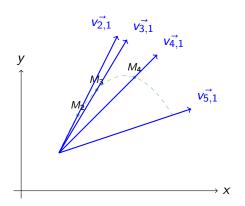
En effet, si le déplacement est plus petit, Δt est aussi plus petit.

De la vitesse moyenne à la vitesse instantanée


Yves Delhave

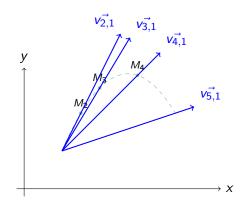
Mais le vecteur vitesse $\vec{v}_{4,1}$ n'est toujours pas dans la direction du mouvement.

De la vitesse moyenne à la vitesse instantanée


Yves Delhave

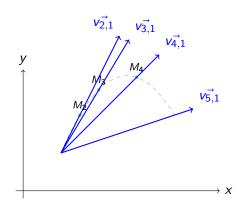
Avec un Δt encore plus petit, entre P et M_3 , les choses s'améliorent.

De la vitesse moyenne à la vitesse instantanée


Yves Delhave

Avec un Δt très petit, entre P et M_2 , le vecteur vitesse $\vec{v}_{2,1}$ est quasiment dans la direction du mouvement..

De la vitesse moyenne à la vitesse instantanée


Yves Delhave

Ceci justifie la définition de la vitesse instantanée.

De la vitesse moyenne à la vitesse instantanée

Yves Delhave

$$ec{v}=rac{\Delta ec{e}}{\Delta t}$$
 où Δt est très petit.

Yves Delhaye

$$\vec{v} = rac{\Delta \vec{e}}{\Delta t}$$

où Δt est très petit.